

# How to convert helium to hydrogen as a carrier gas in gas chromatography

The benefits of using hydrogen from an in-house gas generator

# **Table of contents**

| Step 1: | Review and document all existing run conditions 1 |                                                                                |    |  |  |  |  |
|---------|---------------------------------------------------|--------------------------------------------------------------------------------|----|--|--|--|--|
| Step 2: | Perform a                                         | Ill routine maintenance before switching to Hydrogen                           | 2  |  |  |  |  |
| Step 3: | Installatio                                       | on of new lines and purifiers                                                  | 2  |  |  |  |  |
|         | Figure 1:                                         | Hydrogen Technology / How the generator works                                  | 3  |  |  |  |  |
|         | •                                                 | Ideal Configurations for a Single-GC System:<br>Used as Carrier and Fuel Gas   | 3  |  |  |  |  |
| Step 4: | Establish                                         | Flows for Hydrogen and Nitrogen (Make-up Gas)                                  | 4  |  |  |  |  |
|         | Carrier Ga                                        | as                                                                             |    |  |  |  |  |
|         | Detector I                                        | Flows                                                                          |    |  |  |  |  |
|         | System Ad                                         | djustments                                                                     |    |  |  |  |  |
|         | First run                                         |                                                                                |    |  |  |  |  |
|         | Calibratio                                        | n                                                                              |    |  |  |  |  |
| Step 5: | Changing                                          | from Cylinders to Gas Generators                                               | 5  |  |  |  |  |
|         | Figure 3:                                         | Standard Configuration for a Single GC System:<br>Gas Delivered from Cylinders | 5  |  |  |  |  |
|         | Figure 4:                                         | Ideal Configurations for a Single-GC System: All Generator System              | 6  |  |  |  |  |
|         | Figure 5:                                         | Equity 1 Isothermal 50cm/sec Helium Carrier                                    | 7  |  |  |  |  |
|         | Figure 6:                                         | Equity 1 Isothermal 25cm/sec Helium Carrier                                    | 7  |  |  |  |  |
|         | Figure 7:                                         | Bacterial Acid Methyl Esters - 25cm/sec LGR Equity-1                           | 7  |  |  |  |  |
|         | Benefits o                                        | f in-house gas generators                                                      | 8  |  |  |  |  |
|         | Minimisin                                         | g safety hazards                                                               | 8  |  |  |  |  |
|         | Maximisir                                         | ng convenience                                                                 | 8  |  |  |  |  |
|         | Minimisin                                         | g the cost                                                                     | 8  |  |  |  |  |
|         | Specificat                                        | ions and Ordering Information                                                  | 9  |  |  |  |  |
|         | Hydrogen Generators 1                             |                                                                                |    |  |  |  |  |
|         | Zero Air G                                        | enerators                                                                      | 12 |  |  |  |  |
|         | Nitrogen (                                        | Generators                                                                     | 14 |  |  |  |  |

# How to convert from helium to hydrogen as a carrier gas in gas chromatography

This How to Guide will take you though the steps necessary to convert from Helium to Hydrogen as a carrier gas for Gas Chromatography. The use of Hydrogen from an in-house generator will lead to considerable benefits in cost, safety and convenience in the laboratory. For a detailed explanation of benefits, costs savings, time savings and many other factors affecting the benefits of converting to Hydrogen please see page 8. The order of the steps is important to the successful conversion to Hydrogen. Please follow these steps carefully and you will benefit from a quick and easy conversion to Hydrogen as a carrier gas.

# Step 1

1

# **Review and document all existing run conditions**

- 1 Leak check the system; leaks may affect the determination of the actual flows you are using for your analysis.
- 2 Measure and record the existing dead volume time and calculate the Linear Gas Rate (LGR).
- 3 Measure and record the Septum flow at the initial run temperature.
- 4 Measure and record the Make-up Gas rate.
- 5 Measure and record Vent flow at initial run temperature.
- 6 Measure and record the Fuel gas (Hydrogen) flow rate.
- 7 Measure and record the Air gas flow rate.
- 8 Document any flow changes that take place during the run.
- 9 Document any temperature program rates used.
- **10** Obtain a good sample chromatogram for comparison with the chromatogram obtained after conversion.

# How to convert from helium to hydrogen as a carrier gas in gas chromatography

# Step 2

# Perform all routine maintenance before switching to hydrogen

- 1 Change purifiers Add purifiers to lines as needed to obtain at least 99.9999% pure gas.
- 2 Change septa Use a good low bleed septum.
- **3** Change Injection Port Liners/Inserts and Seals Clean as needed and avoid contamination with oils. Clean parts with acetone before installation.

Caution: Acetone is flammable and can cause health issues. Avoid open flames in the laboratory.

4 Clean Detector/Detector inserts/Jets.

# Step 3

# Installation of new lines and purifiers

- 1 Carrier gas lines Depressurise and vent the Hydrogen line. Then cut the fuel gas line (Hydrogen) and add a tee. Extend a line into the Carrier Gas in-port behind the GC from the other side of the tee.
- 2 Add purifiers to this line if gas purity does not meet at least 99.9999% purity. Use hydrocarbon, oxygen and moisture removing purifiers or a combination purifier to obtain the required gas purity.

Hint: Add purifiers that have indicators to show the percentage of usage of the purifier so that you know when to change the purifiers.

3 Add new make-up gas line preferably for use with Nitrogen.

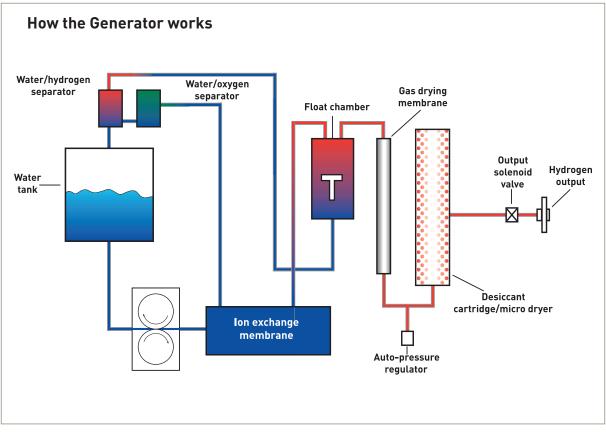



Figure 1: Hydrogen Technology

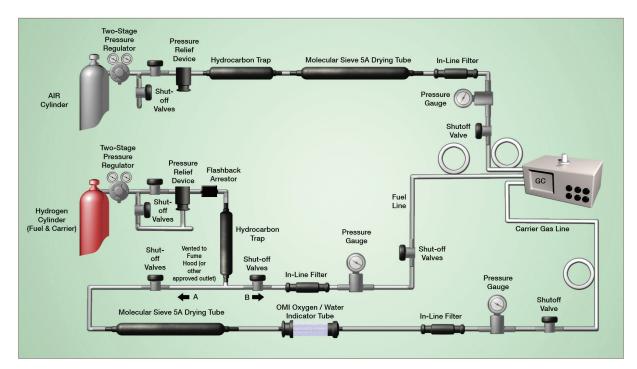



Figure 2: Ideal Configurations for a Single-GC System: Hydrogen Used as Carrier and Fuel Gas

# How to convert from helium to hydrogen as a carrier gas in gas chromatography

# Step 4

# Establish flows for hydrogen and nitrogen (make-up gas)

#### **Carrier Gas**

- 1 Turn gas on and establish column flow with the oven off. With some computer controlled systems, it may be necessary to change the carrier gas input to indicate you are using Hydrogen so that the system makes the correct flow adjustments based on the density of Hydrogen.
- 2 Turn Oven, Injection port, and Detector on after one hour of flow. (It is important to purge all lines and purifiers before establishing temperatures in the various zones of the GC. It takes a considerable amount of time to purge lines and purifiers.

#### Hint: If time permits, it would be best to purge the system overnight.

- 3 Establish Split Vent flow and measure Septum Vent flow.
- 4 Bring the column/oven up to run temperature and again measure the column flow.

#### **Detector Flows**

- 1 Establish the correct flow of Hydrogen to the detector (this includes the sum of all sources of hydrogen going into the detector).
- 2 Establish the correct Make-up gas flow.
- 3 Establish the correct Air flow.

#### **System Adjustments**

1 Ignite the detector and turn on any needed detector electronics. Give the system one hour to stabilise.

#### Hint: A longer warm up period (e.g. overnight) may lead to a more stable response.

- 2 Recheck the system to make sure that all run conditions and temperatures are correct.
- 3 Inject and measure the dead volume time using methane and calculate the Linear Gas Rate (LGR). Make corrections to the LGR as needed.

from mm)

#### Flow = $\pi r^2 L / t_m$

| Where:              | п = 3.1416                   |
|---------------------|------------------------------|
| <b>r =</b> radius c | of the column in cm (convert |
| I = Length          | of the column in cm (conver  |

```
L = Length of the column in cm (convert from meters)
```

 $\mathbf{T}_{\mathbf{R}}$  = Retention time of a non retained peak typically methane

Where: LGR = L /  $t_m$  = L /  $\mu$ 

**Simplified:** Flow =  $\pi r^2 \mu$  (Remember to use units in cm.)

#### First Run

- Inject sample and compare run to previous Helium run.
- Consider if you want to speed run up by doubling LGR or if your goal is just to duplicate the Helium analysis times and separation.

#### Calibration

- Re-establish peak identification there should be no changes unless you are using very polar columns.
- If the run is as you desire, proceed to run your Calibration Standards.

# Step 5

# Changing from cylinders to gas generators

- 1 Install gas generators on bench following instructions provided in the installation manuals.
- 2 Reduce tubing line lengths as much as possible. (See Figure 3).
- **3** Use high quality GC grade copper or stainless steel tubing or clean new lines with solvents and bake dry under nitrogen flow.
- 4 Add gas purifiers as needed. Different makes and models of gas generators provide different purities of hydrogen. You will need to add purifiers if the delivered gas is not at least 99.9999% pure.
- 5 Consider adding Nitrogen generators and high quality air generators to eliminate cylinders and the use of high-pressure gases in the laboratory. A schematic diagram for a typical system using an in-house generator is shown in Figure 4.

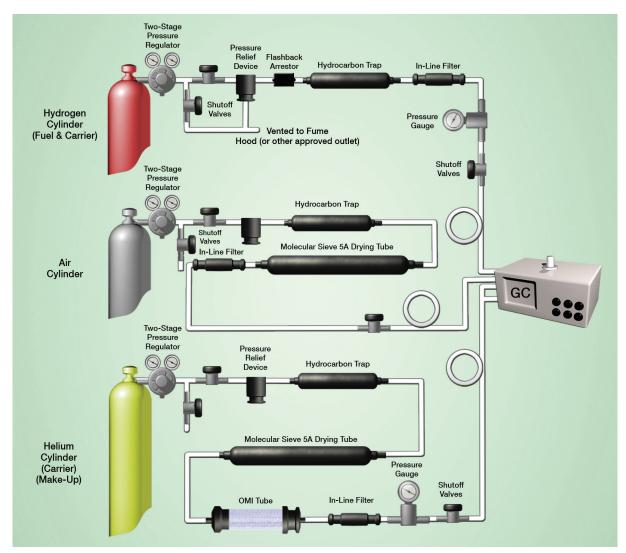
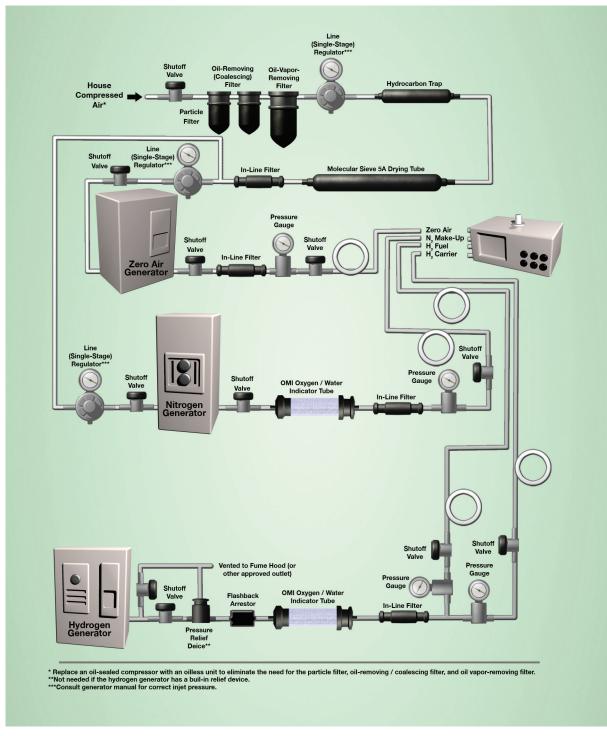
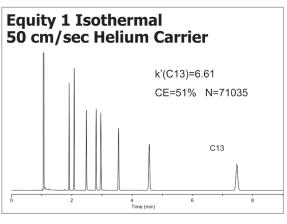
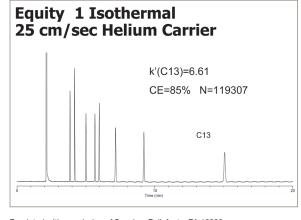



Figure 3: Standard Configuration for a Single GC System: Gas Delivered from Cylinders

# All gas generator system flow schematic



Figure 4: Ideal Configurations for a Single-GC System: All Generator System

# Figures 5 to 7 demonstrate the equivalence of helium and hydrogen in typical separations.



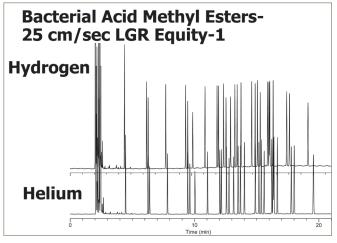

Reprinted with permission of Supelco, Bellefonte, PA 16823

Figure 5: Equity 1 Isothermal 50cm/sec Helium Carrier



Reprinted with permission of Supelco, Bellefonte, PA 16823

Figure 6: Equity 1 Isothermal 25cm/sec Helium Carrier



Reprinted with permission of Supelco, Bellefonte, PA 16823

Figure 7: Bacterial Acid Methyl Esters - 25cm/ sec LGR Equity-1

# Benefits of in-house gas generators

In-house gas generators provide a number of significant benefits to the laboratory, including a dramatic improvement in safety, an increase in convenience, and a lower cost.

#### Minimising safety hazards

An in-house generator is considerably safer than cylinder gas; only a small amount of the generated gas is present at low pressure at any given time and the gas is ported directly to the instrument. If a leak accurs, only a small quantity of gas is dissipated into the laboratory. In contrast, serious hazards exist if gas is supplied using a high-pressure gas cylinder. If a full cylinder of hydrogen was suddenly vented into the laboratory, up to 9000 L of gas would be released, displacing laboratory air and reducing the breathable oxygen content. An in-house gas generator also eliminates the possibility of injury or damage from the transportation and installation of a gas cylinder. A gas cylinder is heavy and can be a hazard to staff and facilities if the valve is compromised during transport (in many facilities, specially trained technicians replace gas cylinders). A leaking hydrogen cylinder could lead to an explosion.

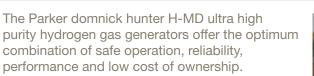
#### Maximising convenience

An in-house gas generator can supply gas on a 24 hr/7 day/week basis with no user interaction (other than routine annual maintenance). In contrast, when cylinder gas is employed, the user must monitor the level of gas in the cylinder and ensure that there is sufficient gas for the desired analyses. The in-house system obviates the need to obtain replacement cylinders; when it is necessary to get a replacement gas cylinder, the chromatographer may need to get an individual who is qualified to handle the cylinders. Cylinders are typically stored outside in a remote area for safety reasons and replacing cylinders can be a significant inconvenience, especially in inclement weather. In addition, a pressurised cylinder could be a significant hazard if the laboratory is located in a seismic zone.

A major benefit of in-house gas generators is that once they are installed, you don't have to worry about the gas supply. Maintenance requirements are minimal, simply replace the filters and perform routine maintenance and monitor the water in the hydrogen generators.

#### Minimising the cost

An important advantage of an in-house generator is the dramatic economic benefit compared to the use of gas cylinders. The running cost of an inhouse generator is extremely low; since the gas is obtained from water and maintenance is a few hundred Euros a year for periodic filter replacement.


In contrast, when a gas cylinder is used, the actual cost is significantly greater than the cost of the cylinder. In addition, the time required transporting the cylinder, installing it, returning the used cylinder to storage, and wait for the system to equilibrate must be considered. While the calculation of the precise cost of the use of gas from cylinders for a given user is dependent on a broad range of local parameters and the amount of gas that is used, significant potential savings can be obtained by the in-house generation of gas. A comparison of the cost of supplying gas via cylinders versus the cost for use of an in-house gas generator is presented in Table 1. 'The comparison is based on the GC application using one hydrogen cylinder per week at a cost of €45 per cylinder. A high purity helium cylinder costs approx €500. The hydrogen generator has a flow capacity of >800ml/min.

# Table 1 Annual costs: In-house generation vs. high-pressure cylinders (€)

|                                | In-house<br>Generator (€) | Hydrogen<br>Cylinders (€) | Helium<br>Cylinders (€) |
|--------------------------------|---------------------------|---------------------------|-------------------------|
| Maintenance                    | 600                       | 0                         | 0                       |
| Cylinders                      | 0                         | 2340                      | 26,000                  |
| Cylinder rental                | 0                         | 252                       | 252                     |
| Labour<br>(changing cylinders) | 0                         | 781                       | 781                     |
| Order processing               | 23                        | 270                       | 270                     |
| Shipping                       | 38                        | 2792                      | 2792                    |
| Invoice processing             | 8                         | 90                        | 90                      |
| Inventory control              | 0                         | 54                        | 54                      |
| Total                          | 668                       | 6581                      | 36,820                  |

# **Hydrogen Generators**

for GC and GC/MS carrier gas applications



Utilising field proven PEM cell technology, hydrogen is produced on demand from deionised water and electricity, at low pressure and with minimal stored volume. Innovative control software allows unrivalled operational safety and reliability.

The H-MD generators ideally supply GC and GC/MS carrier gas, in addition to all known combustion detectors that are routinely used in today's laboratory workflows. Four models operate at flow rates; 160 ml/min, 250 ml/min, 500 ml/min and 1100 ml/min.

Hydrogen generators are available with Remote Networking software. Remote Networking software allows up to 27 hydrogen generators to be actively controlled from one central PC, and facilitates true cascading capabilities.

## **Contact Information:**

Parker Hannifin Manufacturing Limited domnick hunter Filtration and Separation Division Dukesway, Team Valley Trading Estate Gateshead, Tyne and Wear England NE11 0PZ

Tel: +44 (0)191 402 9000 Fax: +44 (0)191 482 6296 Email: gasgen@parker.com www.parker.com/dhfns



### **Product Features:**

- Eliminate dangerous hydrogen cylinders from the work place
- Simple to install and operate
- Compact, reliable with minimal maintenance
- Produces a continuous supply of 99.99995% pure hydrogen up to 1,100ml/min and 6.9 bar
- 2 year standard cell warranty
- Optional automatic water fill and remote networking capability





10/11

#### **Product Selection**

| Model   | Flow Rate | Purity*   | Water Consumption<br>(24/7, full flow) | Delivery Pressure |        | Optional Auto    |
|---------|-----------|-----------|----------------------------------------|-------------------|--------|------------------|
|         | ml/min    | %         | L/week                                 | bar g             | psi g  | Water Fill (AWF) |
| 20H-MD  | 160       | >99.99995 | 1.69                                   | 0.69-6.89         | 10-100 | YES              |
| 40H-MD  | 250       | >99.99995 | 2.41                                   | 0.69-6.89         | 10-100 | YES              |
| 60H-MD  | 500       | >99.99995 | 4.82                                   | 0.69-6.89         | 10-100 | YES              |
| 110H-MD | 1100      | >99.99995 | 10.60                                  | 0.69-6.89         | 10-100 | Standard         |

\*With respect to oxygen

Note: For auto water fill option add suffix AWF ie 20H-MD-AWF

#### **Technical Data**

| Ambient Temperature Range                                      | 5 - 40°C<br>41 - 104°F                                                                                 |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Water Supply Pressure*                                         | 0.1 bar g<br>1.45 psi g                                                                                |
| Water Supply Flow Rate*                                        | 1 L/min                                                                                                |
| Water Quality                                                  | Deionised. ASTM II, >1M $\Omega$ , <1 $\mu$ s, filtered to <100 $\mu$ m                                |
| Supply Voltage Range                                           | 90V - 264V 50/60Hz                                                                                     |
| Port Connections Hydrogen Outlet<br>Water Drain<br>Water Fill* | <sup>1</sup> /8" Compression Fitting<br>Quick Release Push in Fitting<br>Quick Release Push in Fitting |

\*With optional AWF

#### Weights and Dimensions

| Model   |     | Height (H) |     | Width (W) |     | Depth (D) | Wei  | ght (Empty) | Weight (Fi | ull of Water) |
|---------|-----|------------|-----|-----------|-----|-----------|------|-------------|------------|---------------|
| Woder   | mm  | in         | mm  | in        | mm  | in        | kg   | lb          | kg         | lb            |
| 20H-MD  | 456 | 17.9       | 342 | 13.5      | 470 | 18.5      | 20.5 | 45.2        | 25         | 55.1          |
| 40H-MD  | 456 | 17.9       | 342 | 13.5      | 470 | 18.5      | 20.5 | 45.2        | 25         | 55.1          |
| 60H-MD  | 456 | 17.9       | 342 | 13.5      | 470 | 18.5      | 20.5 | 45.2        | 25         | 55.1          |
| 110H-MD | 456 | 17.9       | 342 | 13.5      | 470 | 18.5      | 23.6 | 51.8        | 28         | 61.7          |

#### **Preventative Maintenance**

| Preventative Maintenance Kit | Part Number | Change Frequency |
|------------------------------|-------------|------------------|
| 6 Month Kit                  | 604971500   | 6 Months         |
| 24 Month Kit                 | 604970720   | 24 Months        |

#### **Optional Extra's**

| Description                     | Part Number | Required for                                   |
|---------------------------------|-------------|------------------------------------------------|
| Remote Networking User Software | 604971530   | Allows cascading of two generators or more     |
| Remote User Expansion Module    | 604971540   | Each additional generator (604971530 required) |
| Installation kit                | IK7532      | Suitable for all hydrogen generators           |

©2012 Parker Hannifin Corporation. All rights reserved.

Catalogue: 174004750\_02\_EN 03/12



# **Zero Air Generators**

for GC combustion detector applications

The Parker domnick hunter UHP-ZA zero air generators produce a continuous stream of organic impurity free air from an external dry compressed air source and offer superior limits of detection over and above other modes of supply. Flow rates range from 1 L/min to 30 L/min.

The UHP-ZA generators feature an interchangeable top panel facilitating the direct mounting of any Parker domnick hunter hydrogen generator. The stackable system forms an innovative, modular FID gas station suitable for all known GC combustion detectors such as FID, FPD and NPD.

UHP-ZA generators may also be used in many other chemical analysis and life science applications, including LC/MS source gas, zero and combustion gas for total hydrocarbon analysers and as a gas sensing calibration and dilution gas.



### **Contact Information:**

#### Parker Hannifin Manufacturing Limited

domnick hunter Filtration and Separation Division Dukesway, Team Valley Trading Estate Gateshead, Tyne and Wear England NE11 0PZ

Tel: +44 (0)191 402 9000 Fax: +44 (0)191 482 6296 Email: gasgen@parker.com www.parker.com/dhfns

#### **Product Features:**

- Ultra high purity, organic free, air for GC combustion detectors
- Increase resolution and detection limits of analysis
- Compact, reliable with minimal operator attention and maintenance
- Eliminate inconvenient and potentially dangerous air cylinders
- Payback period typically less than 24 months
- Models available to supply up to 75 FID's



#### 12/13

#### **Product Selection**

| Model       | Flow Rate | Organic Impurity | Air Inlet @ 4 -10 bar g<br>(58-145 psi g) | Deli  | very Pressure | Integral   |
|-------------|-----------|------------------|-------------------------------------------|-------|---------------|------------|
|             | L/min     | ppm              | L/min                                     | bar g | psi g         | Compressor |
| UHP-10ZA-S  | 1         | <0.1             | 1.2                                       | 4-10  | 58-145        | NO         |
| UHP-35ZA-S  | 3.5       | <0.1             | 4.2                                       | 4-10  | 58-145        | NO         |
| UHP-50ZA-S  | 5.0       | <0.1             | 6.0                                       | 4-10  | 58-145        | NO         |
| UHP-75ZA-S  | 7.5       | <0.1             | 9.0                                       | 4-10  | 58-145        | NO         |
| UHP-150ZA-S | 15        | <0.1             | 18                                        | 4-10  | 58-145        | NO         |
| UHP-200ZA-S | 20        | <0.1             | 24                                        | 4-10  | 58-145        | NO         |
| UHP-300ZA-S | 30        | <0.1             | 35                                        | 4-10  | 58-145        | NO         |

Note: Add suffix 'E' for 207-253V 50/60Hz ie. UHP-10ZA-S-E Add suffix 'W' for 103 -126V 60Hz ie. UHP-10ZA-S-W

#### **Technical Data**

| Ambient Temperatu  | re Range                                                                                                                                     | 5 - 40°C<br>41 - 104°F                                                                                       |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Inlet Air Quality  |                                                                                                                                              | Clean dry compressed air<br>ISO8573-1:2001 Class 3.2.1                                                       |
| Supply Voltage Ran | ge                                                                                                                                           | 103 - 126V 60Hz<br>207 - 253V 50/60Hz                                                                        |
| Port Connections   | Outlet (UHP-10ZA-S & UHP-35ZA-S)<br>Inlet (UHP-10ZA-S & UHP-35ZA-S)<br>Outlet (UHP-50ZA-S - UHP-300ZA-S)<br>Inlet (UHP-50ZA-S - UHP-300ZA-S) | 1/8" Compression Fitting<br>1/8" Compression Fitting<br>1/4" Compression Fitting<br>1/4" Compression Fitting |

#### Weights and Dimensions

| Model       | Height (H) |      | Width (W) |      | Depth (D) |      | Weight |      |
|-------------|------------|------|-----------|------|-----------|------|--------|------|
| Woder       | mm         | in   | mm        | in   | mm        | in   | kg     | lb   |
| UHP-10ZA-S  | 325        | 12.8 | 340       | 13.4 | 425       | 16.7 | 10.2   | 22.5 |
| UHP-35ZA-S  | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 14.2   | 31.3 |
| UHP-50ZA-S  | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 14.2   | 31.3 |
| UHP-75ZA-S  | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 14.2   | 31.3 |
| UHP-150ZA-S | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 15.2   | 33.5 |
| UHP-200ZA-S | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 15.2   | 33.5 |
| UHP-300ZA-S | 455        | 17.9 | 340       | 13.4 | 425       | 16.7 | 15.2   | 33.5 |

#### **Preventative Maintenance**

| Preventative Maintenance Kit      | Part Number | Change Frequency |
|-----------------------------------|-------------|------------------|
| Inlet Filter PM Kit - all models  | 005A0       | 12 Months        |
| Outlet Filter PM Kit - all models | 005AA       | 12 Months        |
| Fan PM Kit, 230V - all models     | 606272525   | 24 Months        |
| Fan PM Kit, 120V - all models     | 606272526   | 24 Months        |

#### **Optional Extra's**

| Description      | Part Number | Required for                         |
|------------------|-------------|--------------------------------------|
| Installation kit | IK76803     | Suitable for all zero air generators |

©2012 Parker Hannifin Corporation. All rights reserved.

Catalogue: 174004753\_01\_EN 03/12



# **Ultra High Purity Zero**

for GC makeup gas and carrier gas applications

The Parker domnick hunter zero nitrogen generators employ robust, field proven technology to produce ultra high purity nitrogen for GC makeup and carrier gas applications. An integral heated platinum catalyst ensures carrier grade nitrogen free from organic impurities to <0.1ppm.

The generators provide a continuous stream of ultra high purity nitrogen from a single 'plug & play' unit. Models are available with and without an integral oil free compressor, are extremely quiet in operation and are fully approved for use by major instrumentation manufacturers.

Innovative design features include economy mode as standard which extends compressor life and significantly reduces on going running costs.

**Contact Information:** 

Gateshead, Tyne and Wear

Tel: +44 (0)191 402 9000

Fax: +44 (0)191 482 6296 Email: gasgen@parker.com www.parker.com/dhfns

England NE11 0PZ

Parker Hannifin Manufacturing Limited

Dukesway, Team Valley Trading Estate

domnick hunter Filtration and Separation Division

# **Product Features:**

• Ultra high purity, organic free, nitrogen

COSHH - Do you know

- Economy mode as standard, increases compressor life
- Ideal for GC make-up and carrier gas applications including ECD
- Integral oil free compressor, with advanced noise reduction technology
- Eliminate inconvenient and potentially dangerous nitrogen cylinders
- Compact, reliable with minimal operator attention and maintenance



# **Nitrogen Generators**



#### **Product Selection**

| Model        | Flow Rate |                         | Purity*   | Inlet Air @ 9 bar<br>(130psi g) | Deli  | very Pressure | Integral   |
|--------------|-----------|-------------------------|-----------|---------------------------------|-------|---------------|------------|
|              | L/min     | ppm organic impurity    | %         | L/min                           | bar g | psi g         | Compressor |
| UHPZN2-1000  | 1         | <0.1 Total Hydrocarbons | >99.9995% | 42                              | 5     | 72.5          | NO         |
| UHPZN2-1000C | 1         | <0.1 Total Hydrocarbons | >99.9995% | n/a                             | 5     | 72.5          | YES        |
| UHPZN2-3000  | 3         | <0.1 Total Hydrocarbons | >99.9995% | 52                              | 5     | 72.5          | NO         |
| UHPZN2-3000C | 3         | <0.1 Total Hydrocarbons | >99.9995% | n/a                             | 5     | 72.5          | YES        |

\*Purity with respect to oxygen

Note: Add suffix 'E' for 207-253V 50/60Hz ie. UHPZN2-1000-E Add suffix 'W' for 103 -126V 60Hz ie. UHPZN2-1000-W

#### **Technical Data**

| Ambient Temperature Range                     | 15 - 25°C<br>59 - 77°F                                                       |
|-----------------------------------------------|------------------------------------------------------------------------------|
| Inlet Air Quality <sup>†</sup>                | Clean dry compressed air<br>ISO8573-1:2001 Class 21                          |
| Supply Voltage Range                          | 103 - 126V 60Hz<br>207 - 253V 50/60Hz                                        |
| Port Connections Inlet <sup>†</sup><br>Outlet | <sup>1</sup> /4" Compression Fitting<br><sup>1</sup> /8" Compression Fitting |

<sup>†</sup>Non compressor models only

#### Weights and Dimensions

| Model        |     | Height (H) |     | Width (W) |     | Depth (D) | Weight (wit | h compressor) | Weight (withou | t compressor) |
|--------------|-----|------------|-----|-----------|-----|-----------|-------------|---------------|----------------|---------------|
| Woder        | mm  | in         | mm  | in        | mm  | in        | kg          | lb            | kg             | lb            |
| UHPZN2 range | 869 | 34.2       | 345 | 13.6      | 667 | 26.3      | 96          | 211.6         | 86             | 189.5         |

#### **Preventative Maintenance**

| Preventative Maintenance Kit       | Part Number | Change Frequency                                  |
|------------------------------------|-------------|---------------------------------------------------|
| Filter Kit - non compressor option | 606272561   | 12 months                                         |
| Filter Kit - compressor option     | 606272563   | 12 months                                         |
| Compressor Kit 230V                | 606272581   | 4,000 hours or 12 months (which ever comes first) |
| Compressor Kit 120V                | 606272583   | 4,000 hours or 12 months (which ever comes first) |

#### **Optional Extra's**

| Description      | Part Number | Required for                              |
|------------------|-------------|-------------------------------------------|
| Installation kit | IK7694      | Suitable for all zero nitrogen generators |

Catalogue: 174004742\_03\_EN 06/12

©2012 Parker Hannifin Corporation. All rights reserved.



# Notes

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

# Notes

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



# Parker's Motion & Control Technologies

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374



#### Fluid & Gas Handling Key Markets

Aerial lift Agriculture Bulk chemical handling Construction machinery Food & beverage Fuel & gas delivery Industrial machinery Life sciences Marine Mining Mohile Oil & gas Renewable energy Transportation

#### Key Products

Check valves Connectors for low pressure fluid conveyance Deep sea umbilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTFE hose & tubing Quick couplings Rubber & thermoplastic hose Tube fittings & adapters Tubing & plastic fittings



#### Aerospace

Key Markets Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Military aircraft Missiles Power generation Regional transports Unmanned aerial vehicles

#### Key Products

Control systems & actuation products Engine systems & components Fluid conveyance systems & components Fluid metering, delivery & atomization devices Fuel tank inerting systems Hydraulic systems & components Thermal management



Fuel systems & components Wheels & brakes



#### **Hydraulics** Key Markets Aerial lift Agriculture Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oil & gas Power generation Refuse vehicles Renewable energy Truck hydraulics

#### Turf equipment **Key Products**

Accumulators Cartridge valves Electrohydraulic actuators Human machine interfaces Hybrid drives Hydraulic cylinders Hydraulic motors & pumps Hydraulic systems Hydraulic valves & controls Hydrostatic steering Integrated hydraulic circuits Power take-offs Power units Rotary actuators Sensors



#### **Climate Control** Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration Transportation

#### Key Products

Accumulators Advanced actuators CO<sub>2</sub> controls Electronic controllers Filter driers Hand shut-off valves Heat exchangers Hose & fittings Pressure regulating valves Refrigerant distributors Safety relief valves Smart pumps Solenoid valves Thermostatic expansion valves



#### **Pneumatics** Key Markets Aerospace Conveyor & material handling Factory automation Life science & medica

Machine tools Packaging machinery Transportation & automotive

#### Key Products

Air preparation Brass fittings & valves Manifolds Pneumatic accessories Pneumatic actuators & orippers Pneumatic valves & controls Quick disconnects Rotary actuators Rubber & thermoplastic hose & couplings Structural extrusions Thermoplastic tubing & fittings Vacuum generators, cups & sensors



#### Electromechanical Kev Markets Aerospace

Factory automation Life science & medical Machine tools Packaging machinery Paner machinery Plastics machinery & converting Primary metals Semiconductor & electronics Textile Wire & cable

#### **Key Products**

AC/DC drives & systems Electric actuators, gantry robots & slides Electrohydrostatic actuation systems Electromechanical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extrusions



#### **Process Control** Key Markets

Alternative fuels Biopharmaceuticals Chemical & refining Food & beverage Marine & shipbuilding Medical & dental Microelectronics Nuclear Power Offshore oil exploration Oil & gas Pharmaceuticals Power generation Pulp & paper Steel Water/wastewater

**Key Products** Analytical Instruments Analytical sample conditioning products & systems Chemical injection fittings & valves Fluoropolymer chemical delivery fittings, valves & pumps High purity gas delivery fittings, valves, regulators & digital flow controllers Industrial mass flow meters/ controllers Permanent no-weld tube fittings Precision industrial regulators & flow controllers Process control double block & bleeds Process control fittings, valves, regulators & manifold valves



#### Filtration

Key Markets Aerospace Food & beverage Industrial plant & equipment Life sciences Marine Mobile equipment Oil & gas Power generation & renewable energy Process Transportation Water Purification

#### **Key Products**

Analytical gas generators Compressed air filters & dryers Engine air, coolant, fuel & oil filtration systems Fluid condition monitoring systems Hvdraulic & lubrication filters Hydrogen, nitrogen & zero air generators Instrumentation filters Membrane & fiber filters Microfiltration Sterile air filtration Water desalination & purification filters & system



#### Sealing & Shielding Key Markets

Aerospace Chemical processing Consumer Fluid power General industrial Information technology Life sciences Microelectronics Military Oil & gas Power generation Renewable energy Telecommunications Transportation

#### **Key Products**

Dynamic seals Elastomeric o-rings Electro-medical instrument design & assembly EMI shielding Extruded & precision-cut, fabricated elastomeric seals High temperature metal seals Homogeneous & inserted elastomeric shapes Medical device fabrication & assembly Metal & plastic retained composite seals Shielded optical windows Silicone tubing & extrusions Thermal management Vibration dampening

## Parker Worldwide

#### Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

**AT – Austria,** Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

**AT – Eastern Europe,** Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

**AZ – Azerbaijan,** Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

**BE/LU – Belgium,** Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

**BY – Belarus,** Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

**CH – Switzerland,** Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

**CZ – Czech Republic,** Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

**DE – Germany,** Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

**DK – Denmark,** Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

**ES – Spain,** Madrid Tel: +34 902 330 001 parker.spain@parker.com

**FI – Finland,** Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

**FR – France,** Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

**GR – Greece,** Athens Tel: +30 210 933 6450 parker.greece@parker.com

**HU – Hungary,** Budapest Tel: +36 1 220 4155 parker.hungary@parker.com **IE – Ireland,** Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

**IT – Italy,** Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

**KZ – Kazakhstan,** Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

**NO – Norway,** Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

**PT – Portugal,** Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

**RO – Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

**RU – Russia,** Moscow Tel: +7 495 645-2156 parker.russia@parker.com

**SE – Sweden,** Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

**SK – Slovakia,** Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

**TR – Turkey,** Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

**UA – Ukraine,** Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

**UK – United Kingdom,** Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

**ZA – South Africa,** Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com North America

**CA – Canada,** Milton, Ontario Tel: +1 905 693 3000

**US – USA,** Cleveland Tel: +1 216 896 3000

#### **Asia Pacific**

**AU – Australia,** Castle Hill Tel: +61 (0)2-9634 7777

**CN – China,** Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

**IN - India,** Mumbai Tel: +91 22 6513 7081-85

**JP – Japan,** Tokyo Tel: +81 (0)3 6408 3901

**KR – South Korea,** Seoul Tel: +82 2 559 0400

**MY – Malaysia,** Shah Alam Tel: +60 3 7849 0800

**NZ – New Zealand,** Mt Wellington Tel: +64 9 574 1744

**SG – Singapore** Tel: +65 6887 6300

**TH – Thailand,** Bangkok Tel: +662 186 7000-99

**TW – Taiwan,** Taipei Tel: +886 2 2298 8987

#### **South America**

**AR – Argentina,** Buenos Aires Tel: +54 3327 44 4129

**BR – Brazil,** Sao Jose dos Campos Tel: +55 800 727 5374

**CL – Chile,** Santiago Tel: +56 2 623 1216

**MX – Mexico,** Apodaca Tel: +52 81 8156 6000

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

©2013 Parker Hannifin Corporation. All rights reserved.



Parker Hannifin Manufacturing Limited domnick hunter Filtration and Separation Division Dukesway, Team Valley Trading Estate Gateshead, Tyne and Wear England NE11 0PZ Tel: +44 (0)191 402 9000 Fax: +44 (0)191 482 6296 www.parker.com/dhfns